Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(12): 11564-11573, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008079

RESUMO

Coumarin-based fluorescent agents play an important role in the manifold fundamental scientific and technological areas and need to be carefully studied. In this research, linear photophysics, photochemistry, fast vibronic relaxations, and two-photon absorption (2PA) of the coumarin derivatives, methyl 4-[2-(7-methoxy-2-oxo-chromen-3-yl)thiazol-4-yl]butanoate (1) and methyl 4-[4-[2-(7-methoxy-2-oxo-chromen-3-yl)thiazol-4-yl]phenoxy]butanoate (2), were comprehensively analyzed using stationary and time-resolved spectroscopic techniques, along with quantum-chemical calculations. The steady-state one-photon absorption, fluorescence emission, and excitation anisotropy spectra, as well as 3D fluorescence maps of 3-hetarylcoumarins 1 and 2 were obtained at room temperature in solvents of different polarities. The nature of relatively large Stokes shifts (∼4000-6000 cm-1), specific solvatochromic behavior, weak electronic π → π* transitions, and adherence to Kasha's rule were revealed. The photochemical stability of 1 and 2 was explored quantitatively, and values of photodecomposition quantum yields, on the order of ∼10-4, were determined. A femtosecond transient absorption pump-probe technique was used for the investigation of fast vibronic relaxation and excited-state absorption processes in 1 and 2, while the possibility of efficient optical gain was shown for 1 in acetonitrile. The degenerate 2PA spectra of 1 and 2 were measured by an open aperture z-scan method, and the maximum 2PA cross-sections of ∼300 GM were obtained. The electronic nature of the hetaryl coumarins was analyzed by quantum-chemical calculations using DFT/TD-DFT level of theory and was found to be in good agreement with experimental data.

2.
J Phys Chem B ; 126(21): 3897-3907, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35584210

RESUMO

The nature of linear photophysical and nonlinear optical properties of a new squaraine derivative 2,4-bis[4-(azetidyl)-2-hydroxyphenyl]squaraine (1) with efficient near-infrared (NIR) emission was comprehensively analyzed based on spectroscopic, photochemical, and two-photon absorption (2PA) measurements, along with quantum chemical analysis. The steady-state absorption, fluorescence, and excitation anisotropy spectra of 1 and its fluorescence emission lifetimes revealed the multiple aspects of the electronic structure of 1, including the relative orientations of the main transition dipoles, effective rotational volumes in solvents of different polarities, and a maximum molar extinction of 1.35 × 10-5 M-1·cm-1, which is unusually small for similar symmetric squaraines. The degenerate 2PA spectrum of 1 was obtained over a broad spectral range under femtosecond excitation, using standard open-aperture Z-scan and two-photon induced fluorescence methods, revealing maximum 2PA cross sections of ∼400 GM. Squaraine 1 exhibited efficient superluminescence emission in the polar solvent (dichloromethane) at room temperature under femtosecond pumping conditions. Quantum chemical analysis of the electronic structure of 1 was performed using the DFT/TD-DFT level of theory and found to be in good agreement with experimental data. The new squaraine derivative 1 displayed high fluorescence quantum yield, efficient NIR superluminescence, large 2PA cross sections, and high photostability with a photodecomposition quantum yield ∼4 × 10-6, suggesting its potential for applications in two-photon fluorescent bioimaging and lasing.


Assuntos
Ciclobutanos , Corantes Fluorescentes , Ciclobutanos/química , Corantes Fluorescentes/química , Fenóis/química , Fótons , Solventes/química
3.
Chemistry ; 28(17): e202104072, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35157336

RESUMO

The fast relaxation processes in the excited electronic states of functionalized aza-boron-dipyrromethene (aza-BODIPY) derivatives (1-4) were investigated in liquid media at room temperature, including the linear photophysical, photochemical, and nonlinear optical (NLO) properties. Optical gain was revealed for nonfluorescent derivatives 3 and 4 in the near infrared (NIR) spectral range under femtosecond excitation. The values of two-photon absorption (2PA) and excited-state absorption (ESA) cross-sections were obtained for 1-4 in dichloromethane using femtosecond Z-scans, and the role of bromine substituents in the molecular structures of 2 and 4 is discussed. The nature of the excited states involved in electronic transitions of these dyes was investigated using quantum-chemical TD-DFT calculations, and the obtained spectral parameters are in reasonable agreement with the experimental data. Significant 2PA (maxima cross-sections ∼2000 GM), and large ESA cross-sections ∼10-20  m2 of these new aza-BODIPY derivatives 1-4 along with their measured high photostability reveal their potential for photonic applications in general and optical limiting in particular.


Assuntos
Boro , Corantes Fluorescentes , Compostos de Boro , Corantes Fluorescentes/química , Porfobilinogênio/análogos & derivados , Análise Espectral
4.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070488

RESUMO

The electronic nature of 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT) was comprehensively investigated in liquid media at room temperature using steady-state and time-resolved femtosecond transient absorption spectroscopic techniques. The analysis of the linear photophysical and photochemical parameters of HPPT, including steady-state absorption, fluorescence and excitation anisotropy spectra, along with the lifetimes of fluorescence emission and photodecomposition quantum yields, revealed the nature of its large Stokes shift, specific changes in the permanent dipole moments under electronic excitation, weak dipole transitions with partially anisotropic character, and high photostability. Transient absorption spectra of HPPT were obtained with femtosecond resolution and no characteristic solvate relaxation processes in protic (methanol) solvent were revealed. Efficient light amplification (gain) was observed in the fluorescence spectral range of HPPT, but no super-luminescence and lasing phenomena were detected. The electronic structure of HPPT was also analyzed with quantum-chemical calculations using a DFT/B3LYP method and good agreement with experimental data was shown. The development and investigation of new pyrrolo[3,4-c]pyridine derivatives are important due to their promising fluorescent properties and potential for use in physiological applications.


Assuntos
Elétrons , Corantes Fluorescentes/química , Piridinas/química , Pirróis/química , Análise Espectral , Química Computacional , Fluorescência , Corantes Fluorescentes/síntese química , Estrutura Molecular , Teoria Quântica , Solventes/química
5.
ACS Omega ; 6(15): 10119-10128, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056166

RESUMO

A fluorescently labeled peptide that exhibited fast excited state intramolecular proton transfer (ESIPT) was synthesized, and the nature of its electronic properties was comprehensively investigated, including linear photophysical and photochemical characterization, specific relaxation processes in the excited state, and its stimulated emission ability. The steady-state absorption, fluorescence, and excitation anisotropy spectra, along with fluorescence lifetimes and emission quantum yields, were obtained in liquid media and analyzed based on density functional theory quantum-chemical calculations. The nature of ESIPT processes of the peptide's chromophore moiety was explored using a femtosecond transient absorption pump-probe technique, revealing relatively fast ESIPT velocity (∼10 ps) in protic MeOH at room temperature. Efficient superluminescence properties of the peptide were realized upon femtosecond excitation in the main long-wavelength absorption band with a corresponding threshold of the pump pulse energy of ∼1.5 µJ. Quantum-chemical analysis of the electronic structure of the peptide was performed using the density functional theory/time-dependent density functional theory level of theory, affording good agreement with experimental data.

6.
ACS Omega ; 4(12): 14669-14679, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31552306

RESUMO

The electronic properties of neutral 2,4-bis(4-bis(2-hydroxyethyl) amino-2-hydroxy-6-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)squaraine (1) and charged 2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-yl)butyl)benzo-thiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide (2) squaraine derivatives were analyzed based on comprehensive linear photophysical, photochemical, nonlinear optical studies (including two-photon absorption (2PA) and femtosecond transient absorption spectroscopy measurements), and quantum chemical calculations. The steady-state absorption, fluorescence, and excitation anisotropy spectra of these new squaraines revealed the values and mutual orientations of the main transition dipoles of 1 and 2 in solvents of different polarity, while their role in specific nonlinear optical properties was shown. The degenerate 2PA spectra of 1 and 2 exhibited similar shapes, with maximum cross sections of ∼300-400 GM, which were determined by the open aperture Z-scan method over a broad spectral range. The nature of the time-resolved excited-state absorption spectra of 1 and 2 was analyzed using a femtosecond transient absorption pump-probe technique and the characteristic relaxation times of 4-5 ps were revealed. Quantum chemical analyses of the electronic properties of 1 and 2 were performed using the ZINDO/S//DFT theory level, affording good agreement with experimental data. To demonstrate the potential of squaraines 1 and 2 as fluorescent probes for bioimaging, laser scanning fluorescence microscopy images of HeLa cells incubated with new squaraines were obtained.

7.
Org Biomol Chem ; 15(31): 6511-6519, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745371

RESUMO

Fluorescent contrast agents are important tools in cell biology and medical imaging due to their high sensitivity and relative availability. Diketopyrrolopyrrole (DPP) derivatives have been recently studied for applications in bioimaging, but certain drawbacks due to their inherent structure have stifled progress towards their widespread implementation. Aggregation caused quenching (ACQ) associated with π-π stacking in relatively rigid extended conjugation systems as well as hydrophobicity of previously reported DPPs make most unsuitable for biological imaging applications. Addressing these deficiencies, we report the synthesis and photophysical characterization of two new water-soluble diketopyrrolopyrole (DPP) probes that exhibit pronounced protein-induced fluorescence enhancement (PIFE) upon binding serum albumin protein. In vitro studies were also performed showing low cytotoxicity for the new DPP probes. Two-photon fluorescence microscopy (2PFM) images were obtained via excitation at 810 nm and emission in the NIR window of biological transparency, illustrating the potential of these compounds as nonlinear optical bioimaging probes.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica/métodos , Pirróis/química , Albumina Sérica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Células HCT116 , Humanos , Microscopia de Fluorescência/métodos , Fótons , Ligação Proteica , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/toxicidade , Solubilidade , Água/química
8.
R Soc Open Sci ; 3(11): 160373, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28018614

RESUMO

With the scientific community becoming increasingly aware of the need for greener products and methodologies, the optimization of synthetic design is of greater importance. Building on experimental data collected from a synthesized guaiazulene derivative, a series of analogous structures were investigated with time-dependent density functional theory (TD-DFT) methods in an effort to identify a compound with desirable photophysical properties. This in silico analysis may eliminate the need to synthesize numerous materials that, when investigated, do not possess viable characteristics. The synthesis of several computationally investigated structures revealed discrepancies in the calculation results. Further refined computational study of the molecules yielded results closer to those observed experimentally and helps set the stage for computationally guided design of organic photonic materials. Three novel derivatives were synthesized from guaiazulene, a naturally occurring chromophore, exhibiting distinct halochromic behaviour, which may have potential in a switchable optoelectronic system or combined with a photoacid generator for data storage. The protonated forms were readily excitable via two-photon absorption.

9.
Int J Nanomedicine ; 11: 6161-6168, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920523

RESUMO

Photodynamic therapy (PDT) processes involving the production of singlet oxygen face the issue of oxygen concentration dependency. Despite high oxygen delivery, a variety of properties related to metabolism and vascular morphology in cancer cells result in hypoxic environments, resulting in limited effectiveness of such therapies. An alternative oxygen-independent agent whose cell cytotoxicity can be remotely controlled by light may allow access to treatment of hypoxic tumors. Toward that end, we developed and tested both polyethylene glycol (PEG)-functionalized and hydrophilic silica nanoparticle (SiNP)-enriched photoacid generator (PAG) as a nontraditional PDT agent to effectively induce necrotic cell death in HCT-116 cells. Already known for applications in lithography and cationic polymerization, our developed oxygen-independent PDT, whether free or highly monodispersed on SiNPs, generates acid when a one-photon (1P) or two-photon (2P) excitation source is used, thus potentially permitting deep tissue treatment. Our study shows that when conjugated to SiNPs with protruding amine functionalities (SiNP-PAG9), such atypical PDT agents can be effectively delivered into HCT-116 cells and compartmentalize exclusively in lysosomes and endosomes. Loss of cell adhesion and cell swelling are detected when an excitation source is applied, suggesting that SiNP-PAG9, when excited via near-infrared 2P absorption (a subject of future investigation), can be used as a delivery system to selectively induce cell death in oxygen-deprived optically thick tissue.


Assuntos
Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Luz , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Compostos de Sulfônio/farmacologia , Células HCT116 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Necrose , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Fótons , Fármacos Fotossensibilizantes/química , Dióxido de Silício/química , Oxigênio Singlete/metabolismo , Compostos de Sulfônio/química
10.
Molecules ; 21(6)2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27248991

RESUMO

A novel deoxyuridine (dU) benzothiazolium (BZ) derivative, referred to as dU-BZ, is reported that was synthesized via Sonogashira coupling reaction methodology. The deoxyuridine building block was introduced to enhance hydrophilicity, while an alkynylated benzothiazolium dye was incorporated for long wavelength absorption to reduce potential phototoxicity that is characteristic of using UV light to excite common fluorphores, better discriminate from native autofluorescence, and potentially facilitate deep tissue imaging. An impressive 30-fold enhancement of fluorescence intensity of dU-BZ was achieved upon increasing viscosity. Fluorescence quantum yields in 99% glycerol/1% methanol (v/v) solution as a function of temperature (293-343 K), together with viscosity-dependent fluorescence lifetimes and radiative and non-radiative rate constants in glycerol/methanol solutions (ranging from 4.8 to 950 cP) were determined. Both fluorescence quantum yields and lifetimes increased with increased viscosity, consistent with results predicted by theory. This suggests that the newly-designed compound, dU-BZ, is capable of functioning as a probe of local microviscosity, an aspect examined by in vitro bioimaging experiments.


Assuntos
Técnicas Biossensoriais , Desoxiuridina/química , Luz , Viscosidade , Células 3T3 , Animais , Rastreamento de Células/métodos , Fluorescência , Corantes Fluorescentes , Glicerol/química , Espectroscopia de Ressonância Magnética , Metanol/química , Camundongos , Estrutura Molecular , Soluções , Temperatura
11.
ACS Omega ; 1(6): 1149-1156, 2016 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457186

RESUMO

A series of dyes 2-5 based on 5-thienyl-2,1,3-benzothiadiazole and 5-thienyl-2,1,3-benzoselenadiazole cores were synthesized as near-infrared-emitting two-photon-absorbing fluorophores. Fluorescence maxima wavelengths as long as 714 nm and quantum yields as high as 0.67 were realized. The fluorescence quantum yields of dyes 2-4 were nearly constant, regardless of solvent polarity. These diazoles exhibited large Stokes shifts (>110 nm) and high two-photon figure of merit. Cells incubated on a 3D scaffold with probe 4 (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

12.
ACS Appl Mater Interfaces ; 7(4): 2833-46, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25622309

RESUMO

The synthesis, linear photophysical characterization, and nonlinear optical properties of two new symmetrical fluorene-containing quinolizinium derivatives, 2,8-bis((E)-2-(7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)vinyl)quinolizinium hexafluorophosphate (1) and 2,8-bis((E)-2-(7-((7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)ethynyl)-9,9-dihexyl-9H-fluoren-2yl)vinyl)quinolizinium hexafluorophosphate (2), are reported. The nature of the dual-band steady-state fluorescence emission of 1 and 2 was determined, and violation of Kasha's rule along with a strong dependence on solvent polarity were shown. A relatively complex structure of two-photon absorption (2PA) spectra of 1 and 2, with maximum cross sections of ∼400-600 GM, was determined using the open aperture Z-scan method. Different types of fast relaxation processes with characteristic times of 0.3-0.5 ps and 1.5-2 ps were observed in the excited states of the new compounds via femtosecond transient absorption pump-probe spectroscopy. To better understand the photophysical behavior of 1 and 2, a quantum-mechanical study was undertaken using TD-DFT and ZINDO/S methods. Simulated linear absorption spectra were found to be in good agreement with experimental data, while 2PA cross sections were overestimated. Although the new dyes were highly fluorescent in nonpolar solvents, they were essentially nonfluorescent in polar media. Significantly, the quinolizinium dyes exhibited fluorescence turn-on behavior upon binding to bovine serum album (BSA) protein, exhibiting over 4-fold fluorescence enhancement, which was a finding that was leveraged to demonstrate cell membrane fluorescence imaging of HeLa cells.


Assuntos
Membrana Celular/química , Fluorenos/química , Corantes Fluorescentes/química , Quinolizinas/química , Cátions/química , Células/química , Fluorescência , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Espectrometria de Fluorescência
13.
Chemphyschem ; 14(15): 3532-42, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24022985

RESUMO

The synthesis, linear photophysical, two-photon absorption (2PA), femtosecond transient absorption, and superfluorescence properties of a new symmetrical squaraine derivative (1) are reported. Steady-state linear spectral and photochemical properties, fluorescence lifetimes, and excitation anisotropy of 1 were investigated in various organic solvents. High fluorescence quantum yields (≈0.7) and very high photostability (photodecomposition quantum yields ≈10(-6)-10(-8)) were observed. An open-aperture Z-scan method was used to obtain 2PA spectra of 1 over a broad spectral range (maximum 2PA cross section ≈1000 GM). Excited-state absorption (ESA) and gain was observed by femtosecond transient absorption spectroscopy, in which both reached a maximum at approximately 500 fs. Squaraine 1 exhibits efficient superfluorescence. The quantum chemical study of 1 revealed the simulated vibronic nature of the 1PA and 2PA spectra were in good agreement with experimental data; this may provide the ability to predict potential advanced photonic materials.


Assuntos
Aminofenóis/química , Ciclobutanos/química , Fenóis/química , Fótons , Absorção , Aminofenóis/síntese química , Ciclobutanos/síntese química , Corantes Fluorescentes/química , Ligação de Hidrogênio , Luz , Teoria Quântica , Espectrometria de Fluorescência
14.
ACS Appl Mater Interfaces ; 5(17): 8710-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23992402

RESUMO

Two squaraine (SQ) dyes, N-propanesulfonate-benzothiazolium squaraine (SQ-1) and N-propanesulfonate-benzoindolium squaraine (SQ-2), were synthesized with sulfonate groups to increase water solubility. Both dyes are almost nonfluorescent in aqueous solution with fluorescent quantum yields of 0.03, but exhibited fluorescence enhancement after noncovalently binding with bovine serum albumin (BSA). Upon addition of BSA, the fluorescence intensity increased by ca. a factor of 10, along with a 10-fold extension in the fluorescence lifetime. SQ-1 and SQ-2 interacted with BSA efficiently and appeared to show a preference for binding at site II, which involves combinational effects of electrostatic and hydrophobic interactions. The fluorogenic squaraine dyes were then used to label BSA, forming BSA-based nanoparticles (NPs) through noncovalent binding. The resulting BSA-SQ NPs exhibited enhanced near-IR fluorescence and reduced aggregation of the squaraine moiety. The BSA-SQ NPs were used for cell incubation and bioimaging studies. Confocal fluorescent images were obtained for HCT 116 cells incubated with the BSA-SQ NPs and LysoSensor Green, demonstrating the utility of the NP probes for intracellular imaging. This strategy ovecomes the generally low fluorescence emission of SQ dyes in water and aggregation-reduced fluorescence, providing a versatile strategy for sensing and imaging in biological environments.


Assuntos
Ciclobutanos/química , Corantes Fluorescentes/química , Raios Infravermelhos , Nanopartículas/química , Fenóis/química , Soroalbumina Bovina/química , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Ciclobutanos/síntese química , Corantes Fluorescentes/síntese química , Células HCT116 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Nanopartículas/toxicidade , Fenóis/síntese química , Eletricidade Estática
15.
Langmuir ; 29(35): 11005-12, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23947941

RESUMO

Controlling the aggregation behavior of organic dyes is important for understanding and exploring supramolecular assembly utilizing the specific characteristics of aggregation. Regulating J-aggregation by electrostatic interactions between anionic polyelectrolytes and cationic dyes has gained growing interest. Here, we report the formation of J-aggregates of a water-soluble cationic squaraine dye, 4-(pyridinium-1-yl)butylbenzothiazolium squaraine (SQ), using poly(acrylic acid) sodium salt (PAA-Na) as a template. Electrostatic interactions between the PAA-Na polyelectrolyte and the cationic SQ dye enhanced J-aggregation; the absorbance of the resulting J-band with the polyelectrolyte template was much sharper than the absorbance of the J-aggregate formed using a high concentration of NaCl. Significantly, removal of the polyelectrolyte PPA-Na template by the introduction of calcium ions, which can form stronger ionic binding with carboxylate groups, dissociated J-aggregates, freeing the SQ molecules back to unaggregated or lower aggregate forms. To demonstrate the reversibility of the J-aggregate formation cycle, an in situ experiment was conducted that showed 60% reversibility of the second cycle. In addition, an enhancement by ca. 23 times per repeat unit of the two-photon absorption (2PA) cross section was observed at 920 nm for the polyelectrolyte template-SQ J-aggregate compared to unaggregated or lower aggregate SQ. These results suggest a prominent role of polyelectrolyte templated SQ J-aggregation in the enhancement of 2PA efficiency and provide a means of modulating supramolecular assembly.

16.
Chemphyschem ; 13(15): 3481-91, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22887914

RESUMO

The synthesis, comprehensive linear photophysical characterization, two-photon absorption (2PA), steady-state and time-resolved stimulated emission depletion properties of a new fluorene derivative, (E)-1-(2-(di-p-tolylamino)-9,9-diethyl-9H-fluoren-7-yl)-3-(thiophen-2-yl)prop-2-en-1-one (1), are reported. The primary linear spectral properties, including excitation anisotropy, fluorescence lifetimes, and photostability, were investigated in a number of aprotic solvents at room temperature. The degenerate 2PA spectra of 1 were obtained with open-aperture Z-scan and two-photon induced fluorescence methods, using a 1 kHz femtosecond laser system, and maximum 2PA cross-sections of ∼400-600 GM were obtained. The nature of the electronic absorption processes in 1 was investigated by DFT-based quantum chemical methods implemented in the Gaussian 09 program. The one- and two-photon stimulated emission spectra of 1 were measured over a broad spectral range using a femtosecond pump-probe-based fluorescence quenching technique, while a new methodology for time-resolved fluorescence emission spectroscopy is proposed. An effective application of 1 in fluorescence bioimaging was demonstrated by means of one- and two-photon fluorescence microscopy images of HCT 116 cells containing dye encapsulated micelles.


Assuntos
Difenilamina/química , Fluorenos/síntese química , Corantes Fluorescentes/síntese química , Absorção , Fluorenos/química , Corantes Fluorescentes/química , Células HCT116 , Humanos , Micelas , Estrutura Molecular , Fótons
17.
J Phys Chem C Nanomater Interfaces ; 116(20): 11261-11271, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22707998

RESUMO

The synthesis, linear photophysical properties, two-photon absorption (2PA), excited-state transient absorption, and gain spectroscopy of a new fluorene derivative tert-butyl 4,4'-(4,4' (1E,1'E)-2,2'-(9,9-bis(2- (2-ethoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl)bis(4,1 phenylene)]dipiperazine-1-carboxylate (1) are reported. The steady-state linear absorption and fluorescence spectra, along with excitation anisotropy, fluorescence lifetimes, and photochemical stability of 1 were investigated in a number of organic solvents at room temperature. The 2PA spectra of 1 with a maximum cross-section of ~ 300 GM were obtained with a 1 kHz femtosecond laser system using open-aperture Z-scan and two-photon-induced fluorescence methods. The transient excited-state absorption (ESA) and gain kinetics of 1 were investigated by a femtosecond pump-probe methodology. Fast relaxation processes (~1-2 ps) in the gain and ESA spectra of 1 were revealed in ACN solution, attributable to symmetry-breaking effects in the first excited state. Efficient superfluorescence properties of 1 were observed in a nonpolar solvent under femtosecond excitation. One- and two-photon fluorescence microscopy imaging of HCT 116 cells incubated with probe 1 was accomplished, suggesting the potential of this new probe in two-photon fluorescence microscopy bioimaging.

18.
J Am Chem Soc ; 134(10): 4721-30, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22380794

RESUMO

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore's usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H(2)O(2)-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially "light up" in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.


Assuntos
Microscopia de Fluorescência/métodos , Óxidos de Nitrogênio/metabolismo , Estresse Oxidativo , Animais , Células CHO , Cricetinae , Cricetulus , Fótons , Espectrofotometria Ultravioleta
19.
Langmuir ; 28(2): 1515-22, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22188399

RESUMO

Supramolecular structures based on organized assemblies of macrocyclic chromophores, particularly porphyrin-based dyes, have attracted widespread interest as components of molecular devices with potential applications in molecular electronics, artificial light harvesting, and pharmacology. We report the formation of J-aggregates of two porphyrin-based dyes, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP, 4) and an amino tris-sulfonate analogue (5) in water using a functionalized norbornene-based homopolymer, synthesized by ring-opening metathesis polymerization (ROMP). Ionic interactions of the cationic side chains (ammonium groups) of the polymer under acidic conditions with the negatively charged sulfonate groups of the porphyrins facilitated polymer template enhanced J-aggregation of the porphyrin dyes. J-Aggregation behavior was investigated photophysically by UV-vis absorption along with steady-state and time-resolved fluorescence studies. Two-photon absorption (2PA) was enhanced by about an order of magnitude for the J-aggregated TSPP relative to its free base. Significantly, the 2PA cross section of the polymer-templated TSPP J-aggregate was up to three times higher than the J-aggregated TSPP in the absence of the polymer template while the 2PA cross section for polymer-templated J-aggregates of 5 increased substantially, up to ca. 10,000 GM, suggesting a prominent role of polymer-templating to facilitate porphyrin aggregation and greatly enhance nonlinear absorption.


Assuntos
Fótons , Polímeros/química , Porfirinas/química , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
20.
Bioconjug Chem ; 22(10): 2060-71, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21950485

RESUMO

We report the synthesis and characterization of two amine reactive fluorescent dyes with efficient two-photon absorption (2PA) properties and high fluorescence quantum yields. Bioconjugation of these dyes with the DC-101 antibody proved to be useful for selectively imaging the vascular endothelial growth factor receptor 2 (VEGFR-2) in cells expressing this receptor in vitro and in "whole" mounted excised tumors (ex vivo) by two-photon fluorescence microscopy (2PFM). The penetration depths reached within the tumors by 2PFM was over 800 µm. In addition, the concentration of dye required for incubation of these bioconjugates was in the picomolar domain, the probes possessed very good photostability, and the 2PFM setup did not require any additional means of increasing the collection efficiencies of fluorescent photons to achieve the relatively deep tissue imaging that was realized, due, in large part, to the favorable photophysical properties of the new probes.


Assuntos
Anticorpos Monoclonais/química , Carcinoma Pulmonar de Lewis/diagnóstico , Corantes Fluorescentes/química , Imunoconjugados/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Humanos , Imunoconjugados/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Moleculares , Imagem Molecular , Suínos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...